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ABSTRACT: Let G = (V, E) be a finite, simple and undirected graph and A be a non-trivial abelian group with respect
to addition. If there exist a map A:E(G)—> A\{0} such that the induced map A" :V(G) — A, defined by
AT(x) = Z A(xy), where N(X) is neighborhood of vertex X, is constant, then the graph G is said to be A—magic

yeN(x)

graph. In this paper we prove that generalized prism, generalized Antiprism, Fan and Friendship graphs are Z,, —magic

for k >1.

Keywords : Induced map, A—magic graph, Z, —magic graph, Z,, —magic graph, magic labeling.

MR (2000) Subject Classification : 05C78.

INTRODUCTION

A labeling of a graph G is a map that carries graph
elements to integers (usually non-negative integers). A
labeling ¢ is called vertex or edge labeling if the domain is

a vertex or edge set. The concept of magic labeling was
given by Kotzig and Rosa [11]. Motivated by this concept,

BaC a and Hollander [2] define the prime magic labeling of
complete bipartite graphs K BaCa [1] define the

consecutive magic labeling of generalized petersen graphs,

BaC a et.al [4] define the magic total labeling of generalized
petersen graphs and Javed [10] define the super edge magic
total labeling on w-tree. So in last four decades, various
labelings of graphs such as vertex-magic labeling, edge-
magic labeling, graceful labeling and prime labeling have
been studied. For further details see [3,9,20].

The concept of an A-magic graph is due to J. Sedlack
[16,17] who defined it to be a graph with real-valued edge
labeling such that distinct edges have distinct non-negative
labels and the sum of the labels of the edges incident to a
particular vertex is same for all vertices.

In [18,19], R. P Stanley introduced the Z —magic graphs,
where he pointed out that the theory of magic labeling could
be studied in the general context of linear homogenous
diophantine equation. Moreover the construction of magic
graphs, generalization of magic graphs and characterization
of regular magic graphs are studied in [6], [7] and [8]
respectively. Further in [15], R. M. Low and S. M. Lee give
the necessary and sufficient condition for a graph to be

Z,—magic i.e A graph G is Z, —magic if and only if

nn-

all the vertices of G having same degree.
Motivated by the papers [5, 12, 13,14] we discuss

Z , —magicness of certain families of graphs. For this first
we need to know the necessary condition for a graph G to
be Z,—magic. In [15], R. M. Low and S. M. Lee provide

the necessary condition for a graph G to be Z, —magic in
the following theorem.
Theorem 1.1 [15] Let G be Z, —magic, with p vertices

and q edges. Let the induced map A" induced the constant
label X on the vertices of G and | E; | denote the number

of edges labeled i. Then, px=0+|E; |,(mod3).

Moreover to prove the main results, we use the following
corollary.

Corollary 1.2 [15] Let G be Zk — magic graph, with
k|n. Then, G isa Z , —magic graph.

Generalized Prism
The generalized prism can be defined as the cartesian

product C_ x P, of acycle on m vertices and a path on N
vertices. Let

V(C,xP)={v/:ie[l,m], je[1,n]} is the vertex
set and

E(C xP)={(v/V.):ie[l,m], je[l,n]}

i Vil

AWM iell,m], je[l,n-1]}

is the edge set of C_, x P,. Also the indices being taken
modulo m,n.
Theorem 2.3 For N> 2, m> 3, the Generalized Prism
admits Z,, —magic labeling.

Proof. To prove the above statement first we define a map
f:E(C, xP,) > Z,\{0} in the following way:

f (vivi?) =2, forie[1,m], je[l,n-1]

. 2, ifie[l,m], j=1,n
Fg = el
1, ifie[l,m], je[2,n-1]
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Now we define the induced map f "V (C_ xP,)—Z, Generalized Antiprism A"

as follows: The generalized Antiprism A™ can be obtained from the

frv) = (V) +F (vow) +F (My) generalized prism by adding some more edges. So the vertex
=2+2+2=0(mod3) set and the edge set of Generalized Antiprism A™ are

£r(vy) = F (o) +F (vive) +F (vVi) defined under modulo N, m in the following way:
=2+2+2=0(mod3) V(A-lm):{xij fie[l,n], je[l,m]}

P =f (wv) +F () +F (v ve) E(AT) ={(x/xL,) i e[L,n], j e[Lmyof(ex) i e[L,n], j e[L,m-1])
= 2+2+2=0(mod3) ) T elLn], j e[t m—1T3o{(x ) i e[Ln], j <[2.m]y

Frm) = () +F (v ) +F (V) LK) T ef2,n], j e[ mTyof0dx) -1 j e[2,m]}
=2+2+2=0(mod3)

Fr ) = (Vi) +F () +F (W) Theorem 34 For m>2, n>3, the Generalized

= 2+2+2=0(mod3), for i e[2,m—-1] Antiprism admits Z,, —magic labeling.

frO) = F Vi) +F () +F (V) Proof. To prove the above statement first we define a map

= 2+2+2=0(mod3), for i e[2,m-1] h:E(A") — Z,\{0} in the following way:
frO) = F (V) +F (vav)) +F (W) +F (V) h(xx,)=2  for ie[Ln], j=1m

= 1+1+2+2=0(mod3), for je[2,n-1]
Frvn) = () +F (ava) +F (e )+ (vi7vg)
= 1+1+2+2=0(mod3), for je[2,n-1]

h (Xij Xim) =h (Xijxij++11) =h (Xij Xijil) =h (Xijxij:ll) =h (Xfxrifl) =1
Now we define the induced map h*:V(A") - Z,

- i i i i1 as follows:
Fr) = (W) +F (V) +F (V) +F (V) +
20 oot h* () = h (6x3) +h (i) +h () +h (x0)
for i e[2,m-1], je[2,n-1]. = 2+2+1+1=0(mod3)

Hence f*(v/)=0(mod3) for all ie[L,m], je[l,n]. h*(x")=h (x"x))+h (X"x")+h ("X")+h (x"X")
So Generalized prism is Z, —magic. Now by corollary (1), = 2+42+1+1=0(mod3)

we conclude that Generalized prism is Z,, —magic for h+(Xi1) =h (XilXi1+1)+h (Xil—lxil)+h (X-1Xi2)+h (Xilxi2+1)

k >1. This conclude the proof. W = 242+1+1=0(mod3), for i e[2,1]

() =0 (X +h () +h () +h (475

i i T+l

=2+2+1+1=0(mod3), for ie[2,n]
h(x!) =h () +h ox) +h (™)

+h (™) +h () 7) +h ()

=1+1+1+1+1+1=0(mod3), for je[2,m-1]
h*(x) = h (¢xL) +h () +h ()

+h (Xijxij++11)+h (Xijxij_l)+h (Xijxij—_ll)

= 1+1+1+1+1+1=0(mod3),

for je[2,m-1],i€[2,n]

Clearly h"(x') =0(mod3) forall i €[1,n], j €[1,m].

So Generalized Antiprism is Z, —magic. Now by corollary

(1), we conclude that Generalized Antiprism is Z,, —magic
for K >1. This conclude the proof. W

Figure 1: An illustration of Cg x P; labeling.
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n-2
= 2 ' ; .1 2 §1+ (c)= Zfl (Cxi) +& (Cxl) +& (an)
o e i=3
' ! '\ 1 /ﬁ | 4 : +&(C%,) + & (X, )
o 1\ 11 \1\‘} 11N 2 =2(N—4)+2+2+1+1
N e VAN - 2n-2=1(mod3)
SR S T & (%)=& (x,) = 2+2=1(mod3)
L= - - L + — e+ —
PR AN 11 1 ’,_«’\ \q 1 ‘ 2 & (%) =4&" (x,4)=2+1+1=1(mod3)
AV AN A ‘) =
| el 1 e & (%) =& (X)) + & (%iX%,) +& (ex)
L S A =1+1+2=1(mod3), for i €[3,n—2]
~2 ‘ 2~ Case(ii) when n = 3(mod6)

First we define a map &,, which is induced by & in the
following way:

&,(cx) =24 (cx,)(mod3), for i €[1,n]

& (% %;,1) =28, (%%, )(mod3), for i [1,n—1]

Now we define the map &, , which is induced by & in the

Figure 2. Anillustration of AB3 labeling
Fan graph F,
A fan is a graph obtained by joining all vertices of path P,

to a further vertex C, called the center. So the vertex set and ) .
the edge set of fan graph are defined under modulo N inthe  following way:

following way: & (€) =2&7(c) =2(mod3),
V(F)={c,x:ie[l,n]} EX(x) = 2& (%) = 2(mod3), for i [1,n]
E(F,) ={(xx,.) :i e[, n]}{(cx) i e[1 n]} Case(iii) when n = 2(mod 6)
Theorem 4.5 For N >4, the fan graph is Z,, —magic. First we define a map & :E(F,)—>Z,\{0} in the
Proof. Case(i) when n =0(mod6) following way: _
First we define a map & : E(F,) » Z;\{0} in the £(cx) = {1, for i=1,n
: 3L .
following way: 2, for 2<i<n-1

&(ox) = &(ex,) = &(% %) = & (X4%,) = 2, £ (xx)= 1, foroddi ;1<i<n-1
E(xx,)=1forie[2,n-2] ARSI 2, foreveni j1<i<n-1
2, for3<i<n-2 Now we define the induced map & :V(F,) >Z, as
&(ex)=41, fori=2,n-1 follows:
& () = & (x)=1+1=2(mod3)

Now we define the induced map &' :V(F,) > Z, as
follows:

& (%) & (X X) + & (%X%,,) +&; (cx)
= 14+2+2=2(mod3), for i e[2,n—1]

GO = YEO)HEO)HE(K)
= 2(n-2)+1+1=2n-2=2(mod?3)
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Figure 3. An illustration of F labeling
Case(iv) when n=1(mod6)
First we define a map &, :E(F,) >Z;\{0} in the
following way:

& (ex) =&, (cx) = &,(cx,) = &,(%%,) =1

& (%) = &,(e%,) = 2,5,(cx) = 2, for
i e[4,n-1]
2, foroddi ;3<i<n-1
&, (xx,,) =41, foreveni ;3<i<n-1Now

we define the induced map &, :V (F,) — Z, as follows:

GO = TA)+EOK) T 4(00) + (00 +£(x,)
= 2(n—-4)+1+2+1+1=2n-3=2(mod3)

i (%) & (X)) =1+1=2(mod3)
& (x) 2+2+1=2(mod3), for i e[2,n—1]

Case(v) when n = 4(mod6)
First we define a map & :E(F,)—>Z,\{0} in the
following way:

& (0x) = & (0x,) = 2,5,(x%,) =1

&s(Cx;) = & (% %,,) =1 for i e[2,n-1]
Now we define the induced map & :V(F,) —>Z, as
follows:

IR YACOREACHREICS
n—-2+2+2=n+2=0(mod3)

& (k) = & (x)=1+2=0(mod3)

& (x) = 1+1+1=0(mod3), for ie[2,n-1]
Case(vi) when n=5(mod 6)

First we define a map & :E(F,) —>Z,\{0} in the
following way:
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& (X)) = & (0%5) = &5 (c%,) = & (ex5) = & (ex,) = 2
& (%) = & (X, 4 %,) =2, &(%x,,) =1, for i €[2,5]

&s(cx,) =&, (cx) =1, for i €[6,n—1]
1, foroddi ;6<i<n-2
& (Xix,,) =<2, foreveni;6<i<n-2

Now we define the induced map & :V(F)) >Z; as
follows:

EOREIDYACORS YACHRTACARNACARECS
= (N-6)+6+2+1+2=n+5=1(mod3)

& (%) = & (x)=2+2=1(mod3)
&(x) = 2+1+1=1(mod3), for i €[2,n—-1]

It is easy to see that in all cases the induced maps are
constant. So fan graph is Z3 —magic. Now by corollary (1),

we conclude that fan graph is Z3k —magic for K >1. This
conclude the proof. W

T

Figure 5. An illustration of F5 labeling.

Friendship graph T,

The friendship graph T, is a set of N triangles having a
common central vertex and otherwise disjoint. Let C denote
the central vertex. For the i th triangle, let X; and Y, denote
the other two vertices. So the edge set of friendship graph is
{cx, ey, xy: 11 €[1,n]}.

Theorem 5.6 For N> 3, the friendship graph is

Z,, —magic.

Proof. Case(i) when n=0,3(mod6)
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First we define a map w,:E(T,) >Z,\{0} in the
following way:

wi(cx) = wi(ey) =1, ywi(xy;) =2, for i €[1,n]
Now we define the induced map w, :V(T,) > Z, as
follows:

vi© = STy(ex) +ya(ey)] = 20 =0(mod3)

i=1

(X)) +wy(XY;) =1+2=0(mod3)
i (cy;) +yi(X%Y;) =1+2=0(mod3)

wr (%) =
vy (Y1)

Case(ii) when n=1,4(mod 6)

First we define a map w, :E(T,) > Z;\{0} in the
following way:

w,(Cx) =w,(cy;)) =y, (Xy;) =1, for ie[1,n]

Now we define the induced map y, :V(T,) >Z, as
follows:

vi© = Y, (ex)+w,(cy)]= 2n = 2(mod3)
=
v, (%) v, (X)) +y,(XY;) =1+1=2(mod3)
v, (Vi) w,(cy;) +y,(XY;) =1+1=2(mod3)
Case(iii) when n = 2(mod6)
2, for ; 1sisg
Wy (X Xi,1) = n
1 for ; —+1<i<n
2
2, for ; 1si£E
2

¥, (CXi) = (Cyi) =

1, for ; E+1sisn

Now we define the induced map w, :V(T,) >Z, as
follows:

IOREID ACORTACH 3 TACIRTACH)

=N
2

= n+2n=0(mod3)

v (ex) +y,(%Yy,) =1+2 =0(mod3), for 1<i gg
wi(x) =
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wa(cy) +wa(xy,) =1+2=0(mod3), for 1<i sg
vy =

wa(cy) +wu(xy,) =1+2=0(mod3), for g+1sisn
Case(iv) when n=5(mod 6)
First we define a map w, :E(T,) > Z,\{0} in the
following way:
w,(cx) =y, (cy,) =w,(Xy,) =1, for ie[1,n-1]
W, (CX,) =y, (cy,) =w,(XYy;) =2 forie[1,n-1]
Now we define the induced map y, :V(T,) > Z, as
follows:

ACEYACATACH A CSRUACH
=2(n-1)+2+2=0(mod3)
Wy (%) =w,(cx) +w, (%)
=1+2=0(mod3), forie[1,n-1]
'r//;r(xn) W4 (CXn) +‘//4(Xn yn) = 2+15 O(mOdB)
ve(Y) = waley)+w.(xy)
=1+2=0(mod3), for i e[1,n-1]

vi(¥,) = w,(oy,)+w,(xY,)=2+1=0(mod3)

It is not difficult to check that in all cases the induced maps
are constant. So fan graph is Z, —magic. Now by corollary

(1), we conclude that friendship graph T, is Z,, —magic
for K >1. This conclude the proof. W
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